USMLE Epidemiology and Biostatistics

Meta-Analysis: pools data from several studies (greater power), limited by quality/bias of individual studies
Clinical Trial: compares two groups in which one variable is manipulated and its effects measured
Cohort (relative risk): compares group with risk factor to a group without - asks "what will happen?" (prospective). Proves cause-effect
Case Control (odds ratio): compares group with disease to group without disease - asks "what happened?" (retrospective). Issues with confounding and inability to prove causation
Case Series: good for rare diseases, describe clinical presentation of certain disease
Cross-Sectional: data from a group to assess disease prevalence at a particular point in time - asks "what is happening?"

Sensitivity (rule out - screening): proportion of people with disease who test positive: TP / (TP + FN) = $\mathbf{1}$ - FN. If 100\%, then all negative tests are TN.
Specificity (rule in - confirmatory): proportion of people without disease who test negative: $\mathbf{T N} /(\mathbf{T N}+\mathbf{F P})=\mathbf{1} \mathbf{- F P}$. If 100%, then all positive tests are TP.

	DISEASE		
TEST		+	-
	+	TP	FP
	-	FN	TN

PPV: proportion of positive tests that are true positives: TP / (TP + FP). If disease prevalence is low, then PPV will be low.
NPV: proportion of negative tests that are true negatives. TN / (TN + FN)
Higher specificity -> higher PPV Higher sensitivity -> higher NPV
Odds ratio (case control): odds of having disease in exposed group divided by odds in unexposed group. (a/b) / (c/d) = (ad) / (bc)
Relative risk (cohort): relative probability of getting disease in exposed group versus unexposed. [a/(a+b)] / [c/(c+d)]
Attributable risk: proportion of cases attributable to one risk factor.
[a/(a+b)] - [c/(c+d)]

	DISEASE		
TEST		+	-
	+	\mathbf{a}	\mathbf{b}
	-	\mathbf{c}	\mathbf{d}

Absolute risk reduction (ARR): [c/(c+d)] - [a/(a+b)]
NNT = 1 / ARR
Standardized mortality ratio (SMR) = observed \# deaths / expected \# deaths
Incidence: \# of new cases in a unit of time/ pop. at risk
Prevalence: total \# of cases at a given time / pop. at risk
Prevalence $=$ incidence * dz duration. Prevalence $>$ incidence in chronic dz. Prevalence $=$ incidence in acute dz
Normal distribution: mean $=$ median $=$ mode
Standard deviation: 1 (68\%) - 2 (95\%) - 3 (99.7\%)
SEM $=\sigma / \sqrt{n}$
Positive skew (mean > median > mode), negative skew (mean < median < mode)

Normal Curve

Positive Skew

Negative Skew

Reliability ("precision") - reproducibility of test. Affected by random error
Validity ("accuracy") - measures trueness of data. Affected by systematic error Correlation coefficient measures how related two values are:
$+1=$ perfect positive correlation, $-1=$ perfect negative correlation, $0=$ no correlation
$\mathbf{H}_{\mathbf{0}}$ (null hypothesis): no relationship between two measurements

$\boldsymbol{\chi 2}$	\% or fractions
T-test	2 means
ANOVA	>2 means

Type I (α) error: reject null when it's true
Type II ($\boldsymbol{\beta}$) error: accept null when it's false
Power (1- $\boldsymbol{\beta}$): probability of rejecting null when it is indeed false (increase sample size to increase power)
Selection bias: nonrandom assignment of subjects
Sampling bias: subjects not representative of population
Recall bias: risk for retrospective studies (pts cannot remember things); knowledge of disorder presence alters recall
Late-look bias: data gathered at inappropriate time
Lead-time bias: early detection confused with increased survival
Confounding bias: a factor is related to both exposure and outcome, but not on the causal pathway
Procedure bias: subjects in different groups not treated the same

