USMLE Epidemiology and Biostatistics

Meta-Analysis: pools data from several studies (greater power), limited by quality/bias of individual studies

Clinical Trial: compares two groups in which one variable is manipulated and its effects measured

Cohort (*relative risk*): compares group with *risk factor* to a group without – asks "what will happen?" (prospective). Proves cause-effect

Case Control (*odds ratio*): compares group with disease to group without disease – asks "what happened?" (retrospective). Issues with confounding and inability to prove causation

Case Series: good for rare diseases, describe clinical presentation of certain disease

Cross-Sectional: data from a group to assess disease prevalence at a particular point in time – asks "what is happening?"

Sensitivity (rule *out* – screening): proportion of people with disease who test positive: TP / (TP + FN) = 1 - FN. If 100%, then all negative tests are TN.

Specificity (rule in – confirmatory): proportion of people without disease who test negative: **TN / (TN + FP) = 1 - FP**. If 100%, then all positive tests are TP.

PPV: proportion of positive tests that are true positives: **TP / (TP + FP)**. If disease prevalence is low, then PPV will be low.

NPV: proportion of negative tests that are true negatives. TN / (TN + FN) Higher specificity -> higher PPV Higher sensitivity -> higher NPV

Odds ratio (*case control*): odds of having disease in exposed group divided by odds in unexposed group. (a/b) / (c/d) = (ad) / (bc)

Relative risk (cohort): relative probability of getting disease in exposed group versus unexposed. [a/(a+b)] / [c/(c+d)]

Attributable risk: proportion of cases attributable to one risk factor.

[a/(a+b)] - [c/(c+d)]

Absolute risk reduction (ARR): [c/(c+d)] - [a/(a+b)]

NNT = 1 / ARR

Standardized mortality ratio (SMR) = observed # deaths / expected # deaths

Incidence: # of *new* cases in a unit of time/ pop. at risk **Prevalence**: *total* # of cases at a given time / pop. at risk

Prevalence = incidence * dz duration. Prevalence > incidence in *chronic* dz. Prevalence = incidence in *acute* dz

Normal distribution: mean = median = mode

Standard deviation: 1 (68%) – 2 (95%) – 3 (99.7%)

 $SEM = \sigma / \sqrt{n}$

Positive skew (mean > median > mode), negative skew (mean < median < mode)

Reliability ("precision") – reproducibility of test. Affected by random error **Validity** ("accuracy") – measures trueness of data. Affected by systematic error

Correlation coefficient measures how related two values are:

+1 = perfect positive correlation, -1 = perfect negative correlation, 0 = no correlation

χ2	% or fractions
T-test	2 means
ANOVA	> 2 means

DISEASE

TP

DISEASE

a

C

FP

TN

b

d

TEST

TEST

+

 H_0 (null hypothesis): no relationship between two measurements

Type I (α) **error**: reject null when it's true **Type II** (β) **error**: accept null when it's false

Power (1-\beta): probability of rejecting null when it is indeed false (increase *sample size* to increase power)

Selection bias: nonrandom assignment of subjects

Sampling bias: subjects not representative of population

Recall bias: risk for retrospective studies (pts cannot remember things); knowledge of disorder presence alters recall

Late-look bias: data gathered at inappropriate time

Lead-time bias: early detection confused with increased survival

Confounding bias: a factor is related to both exposure and outcome, but not on the causal pathway

Procedure bias: subjects in different groups not treated the same

Rishi Kumar, MD https://rk.md