PaCO2 Equation

I’ve previously written about the alveolar gas equation and oxygen delivery equation, both of which deal with the physiologic process of oxygenation. Now I want to discuss the important relationship between alveolar ventilation (VA), carbon dioxide production (VCO2), and the alveolar carbon dioxide tension (PACO2). For the purposes of this explanation, PACO2 roughly approximates arterial carbon dioxide tension (PaCO2) if ventilation/perfusion mismatch is minimal.

PaCO2 is the arterial carbon dioxide tension, VCO2 is the carbon dioxide production, and VA is alveolar ventilation, 0.863 is a conversion factor to equate different units

Assuming a normal PaCO2 is 35 – 45 mmHg, the equation above suggests that an elevated PaCO2 (hypercapnia) is the result of decreased VA (respiratory depression, oversedation, muscle fatigue, or more dead space ventilation). An important consideration is that increased VCO2 is handled well by an intact respiratory system. For example, when you exercise, your PaCO2 remains relatively stable since your increased VCO2 during exertion is matched with an increased VA. Therefore, an increased VCO2 is not traditionally viewed as a cause of hypercapnia in otherwise healthy patients.

Looking at the curve, if your patient is already hypercarbic and then reduces their VA (the purple arrow), you’ll see a much larger rise in PaCO2 than if the patient is eucarbic and reduces their VA by the same amount (green arrow). This is simply due to movement along the steeper portion of the curve.

Clinically, if you see a patient “panting” with rapid, deep breaths, this might NOT be hyperventilation. Instead, this might be compensation for an underlying process increasing carbon dioxide production. Sedating these patients to calm them down might be detrimental (reduce VA) and throw them into a hypercarbic failure.

Hypercarbia and hypocarbia have significant physiologic implications ranging from vascular autoregulation to acid-base status, so it’s important to keep the PaCO2 equation in mind when thinking about a patient’s ventilation.

You might also like

Leave A Reply

Your email address will not be published.